

FINAL CA – November 2017

ADVANCED MANAGEMENT ACCOUNTING

Test Code – P 18 Branch (MULTIPLE) (Date : 25.06.2017)

(50 Marks)

Note: All questions are compulsory.

Question 1 (8 Marks)

Let the P_1 , P_2 and P_3 be the three products to be manufactured. Then the data are as follows:

Products	Product ingredients						
FIGUUCIS	Α	В	С	Inert Ingredients			
P 1	5 %	10%	5%	80%			
P ₂	5%	5%	10%	80%			
P ₃	20%	5%	10%	65%			
Cost per kg (`)	64	16	40	16			

Cost of Product P1

= 5% × `64 + 10% × `16 + 5% × `40 + 80% × `16 = `19.60 per kg

Cost of Product P2

- = 5% × `64 + 5% × `16 + 10% × `40 + 80% × `16
- = `20.80 per kg.

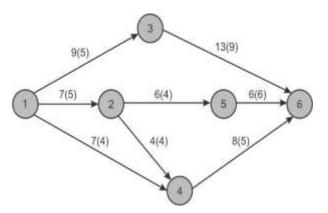
Cost of Product P3

- = 20% × `64 + 5% × `16 + 10% × `40 + 65% × `16
- = `28.00 per kg.

Let x_1 , x_2 , and x_3 be the quantity (in kg) of P₁, P₂, and P3 respectively to be manufactured. The LP problem can be formulated:

Objective function: (2 marks)

Maximize Z = (Selling Price – Cost Price) × Quantity of Product = ($^32.60 - ^19.60$) x₁ + ($^34.80 - ^20.80$) x₂ + ($^36.00 - 28$) x₃


 $= 13x_1 + 14x_2 + 8x_3$

Subject to Constraints: (6 marks)

Or	$2x_1 + x_2 + x_3 \le$	3,600
	$1/20 x_1 + 1/10 x_2 + 1/10 x_3 \le$	120
Or	$x_1 + 2x_2 + 2x_3 \le$	2,400
	X1 ≤	30
and	x 1 , x 2 , x 3 ≥	0

Question 2 (8 Marks)

The Network for the given problem (2 marks)

Different Paths, Normal Duration and Minimum Duration:

Path	Normal Duration (Days)	Minimum Duration (Days)
1–3–6	22	14
	(9 + 13)	(5 + 9)
1–2–5–6	19	15
	(7 + 6 + 6)	(5 + 4 + 6)
1–2–4–6	19	14
	(7 + 4 + 8)	(5 + 4 + 5)
1–4–6	15	9
	(7 + 8)	(4 + 5)

Critical Path is 1-3-6

Total Cost of the Project for the Normal Duration: (1 mark)

= Normal Cost + Overhead Cost + Penalty Cost = `6,000 + `150 × 22 Days

+ `80 × 3 Days

= `9,540

Crashing First Step: (2 mark)

Let us now crash activities on the Critical Path.

Activity	$\Delta \mathbf{T}$	$\Delta C / \Delta T$	Remark
1–3	4	100	Least Cost Slope
3–6	4	210	

As activity 1–3 has least cost slope, **crash activity 1–3 by 3 days at a crash cost of `100 per day.** Total Cost of the Project for the 19 Days:

- = Normal Cost + Overhead Cost + Crashing Cost
- = `6,000 + `150 × 19 Days + `100 × 3 Days
- = `9,150

The Various Paths in the Network with Revised Duration are:

1–3–6 with Project Duration = 19 Days (Critical Path.1)

1–2–5–6 with Project Duration = 19 Days (Critical Path.2)

1–2–4–6 with Project Duration = 19 Days (Critical Path.3)

1–4–6 with Project Duration = 15 Days

Crashing Second Step: (2 marks)

Let us now crash activities on the Critical Paths.

Critical Path	Activity	ΔΤ	ΔC/ΔΤ	Remark
1	1–3	1	100	Least Cost Slope
•	3–6	4	210	
	1–2	2	90	
2	2–5	2	50	Least Cost Slope
	5–6	-	-	-
	1–2	2	90	
3	2–4	-	-	-
1	4–6	3	60	Least Cost Slope

Possible Crashing Alternatives are:

(1 mark)

Critical Path- Activities	1–3, 2–5 & 4–6	1–3 & 1–2*
Cost Slopes		
$(\Delta C / \Delta T)$	`210	`190
	(`100 + `50 + `60)	(`100 + `90)
Remark	Independent Activities	Independent Activity
		+ Common Activity*

As crashing cost per day for every alternative is greater than `150 i.e. Overhead Cost per day. Therefore, any reduction in the duration of project will increase the cost of project completion.

Hence, the Lowest Cost of Completion is `9,150 with the Completion Time of 19 Days.

Question 3 (10 Marks)

(a) Workings

Statement Showing "Cost Driver Rate" (3 Marks)

Overhead	Cost(`) - Lacs	Cost Driver	Cost Driver Rate (`)
Production Line Cost	2,310	60,000 Machine Hrs.	3,850 per hr.
			<u>2,310lacs</u>
			60,000hrs.
Transportation Cost			
Delivery Related (60%)	540	640 Deliveries	84,375 per delivery
			540lacs
			640delivery
Distance Related (40%)	360	2,25,000 Kms.	160 per km
			360lacs
			2,25,000kms.

(i) Forecast Total Cost using Activity Based Costing Principles (4 Marks)

Elements of Cost			``
Material			4,75,000.00
Labour			2,50,000.00
Overhead			
Production Line Cost (`3,	850 × 6 hrs.)		23,100.00
Transportation Cost -			
Delivery Related	`84,375		8,437.50
,	10 cars		
Distance Related	`160 × 50,000 kms		8,000.00
	1,000 cars		
		Total	7,64,537.50

(ii) Calculation of Cost Gap Between Forecast Total Cost and the Target Total Cost (3 Marks)

Particulars	Amount (`)
Target Selling Price	9,75,000.00
Less: Operating Profit Margin (25%)	2,43,750.00
Target Cost (Target Selling Price – Operating Profit)	7,31,250.00
Forecast Total Cost	7,64,537.50
Cost Gap (`7,64,537.50 – `7,31,250)	33,287.50

Question 4 (8 Marks)

First of all, random numbers 00 – 99 are allocated in proportion to the probabilities associated with demand as given below: (1 Mark)

Demand	Probability	Cumulative Probability	Random Nos.
0	0.05	0.05	00 – 04
1	0.10	0.15	05 – 14
2	0.30	0.45	15 – 44
3	0.45	0.90	45 - 89
4	0.10	1.00	90 – 99

Based on the ten random numbers given, we simulate the demand per day in the table given below:

It is given that stock in hand is 8 units and stock on order is 6 units (expected to receive on next day).

Let us now consider both the options stated in the Problem. **Option-A (3 Marks)**

Order 5 books when the inventory at the beginning of the day plus orders outstanding is less than 8 books:

Day	Random No.	Sales Demand	Op. Stock (in hand)	Qty. Order	Qty. Recd. at End of the Day	Total Qty. on Order	Closing Stock
1	89	3	8			6	5
2	34	2	5		6		9
3	78	3	9				6
4	63	3	6	5		5	3
5	61	3	3			5	0

6	81	3	0	5	5	5	2
7	39	2	2	5		10	0
8	16	2	0		5	5	3
9	13	1	3		5		7
10	73	3	7	5		5	4

Carrying Cost	=	`195 (39 Books × `5)
Ordering Cost	=	`400 (4 Orders × `100)
Total Cost	=	`595 (`195 + `400)

Option-B(3 Marks)

Order 8 Books, when the inventory at the beginning of the day plus orders outstanding is less than 8 books:

Day	Random No.	Sales Demand	Op. Stock (in hand)	Qty. Order	Qty. Recd. at End of the	Total Qty. on Order	Closing Stock
					Day		
1	89	3	8			6	5
2	34	2	5		6		9
3	78	3	9				6
4	63	3	6	8		8	3
5	61	3	3			8	0
6	81	3	0		8		5
7	39	2	5	8		8	3
8	16	2	3			8	1
9	13	1	1		8		8
10	73	3	8				5
Carrying Cost = `225 (45 Books × `5)							

Ordering Cost	
Total Cost	

= `200 (2 Orders × `100)

= `425 (`225 + `200)

Total Cost

Recommendation

Since **Option B** has *lower cost*, Manager should order 8 books. **(1 Mark)**

Question 5 (8 Marks)

Preparation of Production Cost Budget for 50,000 units for the year 2014 (4 Marks)

Particulars	Cost Per Unit	TotalAmount (`)
Materials (W.N1)	1.645	82,237.50
Wages (W.N2)	1.43	71,500.00
Variable Overhead	0.50	25,000.00
Fixed Overhead (`35,000 × 110%)	0.77	38,500.00
Total Cost	4.345 (Approx.)	2,17,237.50

Working Notes

1. Material Cost- (2 Marks)

(a) Increase in Material Price in the Year 2013-

= <u>ActualCost per unit in2013 – BudgetedCost per unit in2013</u> ×100

BudgetedCost per unit in2013

$$\frac{`53,750}{43,000 \text{ units}} - `1 \\ \times 100$$

= 25%

=

42,000 units 39,900 units

= 52,632 units (rounded)

(c) Increased Cost for 50,000 units in the Year 2014-

`82,237.50

Wages- (2 Marks)

=

Rate per hour in 2014-

Wages Paidin the Year 2013 + `0.20 Actual Units Produced

$$= \frac{44,660}{40,600} + 0.20$$

units

= `1.30

- (b) Wages to be paid for 50,000 units i.e. for 50,000 hours (1 hour per unit). When the labour efficiency is 90% only, then Total Wages will be-
 - = 50,000 hours×<u>110</u>×`_{1.30} 100
 - = `71,500

Note: **Fixed Overhead** can also be calculated on the basis of previous year's budgeted figure. **Variable Overhead** may also be calculated by taking `1 per unit.

This question can also be solve by taking 50,000 hrs. as 90% of total hrs. required to produce the 50,000 units.

Question 6 (8 Marks)

(i)) Standard Price per Kg. of Direct Material (2 marks)				
	Material Price Variance		Standard Cost of Actual Quantity – Actual Cost		
	⇒ 5,000 (F)	=	Standard Cost of Actual Quantity - ` 5,20,000		
	Standard Cost of Actual Quantity	,	= ` 5,20,000 + ` 5,000		
			` 5,25,000		
	Standard Cost of Actual Quantity				
		=	= Standard Price per Kg. × Actual Quantity		
	` 5,25,000	=	Standard Price per Kg. × 1,05,000 Kg.		
	Standard Price per Kg.		<u>` 5,25,000</u> 1,05,000Kg.		
= 5 (ii) Standard Quantity for each unit of output (1 ½ marks)					

Material Usage Variance	= Standard Cost of Standard Quantity for Actual		
	Output – Standard Cost of Actual Quantity		
25,000 (A)	= Standard Cost of Standard Quantity for Actual		
	Output – ` 5,25,000		

Standard Cost of Standard Quantity for Actual Output

=` 5,25,000 - ` 25,000 = ` 5,00,000

Standard Cost of Standard Quantity for Actual Output

 Standard Price per Kg. ×Standard Quantity for Actual Output

= `5 × Standard Quantity for Actual Output

⇒ `5,00,000

Standard Quantity for Actual Output

Standard Quantity for each unit of output

<u>1,00,000 Kg.</u> 10,000 units 10 Kg.

(i) Standard Rate of Direct Labour Hour (1 ½ marks)
 Direct Labour Rate Variance = Standard Cost of Actual Time – Actual Cost 15,500 (A) = Standard Cost of Actual Time – `3,08,000
 Standard Cost of Actual Time = `3,08,000 – `15,500.
 = `2,92,500

Standard Cost of Actual Time = Standard Rate per hr. × Actual Hours 2,92,500 = Standard Rate per hr. × 19,500 hrs.

Standard Rate per hr. = ` 2,92,500 / 19,500 hrs. = 15

(i) Standard Time for Actual Production (1 ¹/₂ marks)

Labour Efficiency Variance = Standard Cost of Standard Time for Actual Production – Standard Cost of Actual Time 7,500 (F) = Standard Cost of Standard Time for Actual Production – `2,92,500 Standard Cost of Standard Time for Actual Production = `2,92,500 + `7,500 =` 3,00,000

Standard Cost of Standard Time for Actual Production = Standard Rate per hr.× Standard Time for Actual Production 300000 = `15 × Standard Time for Actual Production

Standard Time for Actual Production = 300000/15 = 20000 hours

(ii) Standard Variable Overhead Rate(1 1/2 marks)

Variable Overhead Variance	= Standard	Variable	Overheadsfor	Production			
	 Actual Variable Overheads 						
10,000 (A)	= Standard	Variable	Overheads	for Production			
-`4,10,000							
Standard Variable Overheads for Production = `4,10,000 – `10,000 =`4,00,000							

Standard Variable Overheads for Production = Standard Variable Overhead Rate Unit × Actual Production (Units)

` 4,00,000 = Standard Variable Overhead Rate Unit x 10000 units

Standard Variable Overhead Rate Unit = 40

Or

Standard Variable Overheads for Production = Standard Variable Overhead Rate per Hr × Std Hrs for Actual Production

` 4,00,000 = Standard Variable Overhead Rate per Hour × 20,000 hrs

Standard Variable Overhead Rate per hour = 20
